How to Find Exact Values for Trigonometric Functions
How to Find Exact Values for Trigonometric Functions
The unit circle is an excellent guide for memorizing common trigonometric values. However, there are often angles that are not typically memorized. We will thus need to use trigonometric identities in order to rewrite the expression in terms of angles that we know.
Preliminaries

Example 1

Evaluate the following. The angle π 12 {\displaystyle {\frac {\pi }{12}}} {\frac {\pi }{12}} is not commonly found as an angle to memorize the sine and cosine of on the unit circle. cos ⁡ π 12 {\displaystyle \cos {\frac {\pi }{12}}} \cos {\frac {\pi }{12}}

Write the expression in terms of common angles. We know the cosine and sine of common angles like π 3 {\displaystyle {\frac {\pi }{3}}} {\frac {\pi }{3}} and π 4 . {\displaystyle {\frac {\pi }{4}}.} {\frac {\pi }{4}}. It will therefore be easier to deal with such angles. cos ⁡ π 12 = cos ⁡ ( π 3 − π 4 ) {\displaystyle \cos {\frac {\pi }{12}}=\cos \left({\frac {\pi }{3}}-{\frac {\pi }{4}}\right)} \cos {\frac {\pi }{12}}=\cos \left({\frac {\pi }{3}}-{\frac {\pi }{4}}\right)

Use the sum/difference identity to separate the angles. cos ⁡ ( π 3 − π 4 ) = cos ⁡ π 3 cos ⁡ π 4 + sin ⁡ π 3 sin ⁡ π 4 {\displaystyle \cos \left({\frac {\pi }{3}}-{\frac {\pi }{4}}\right)=\cos {\frac {\pi }{3}}\cos {\frac {\pi }{4}}+\sin {\frac {\pi }{3}}\sin {\frac {\pi }{4}}} \cos \left({\frac {\pi }{3}}-{\frac {\pi }{4}}\right)=\cos {\frac {\pi }{3}}\cos {\frac {\pi }{4}}+\sin {\frac {\pi }{3}}\sin {\frac {\pi }{4}}

Evaluate and simplify. 1 2 ⋅ 2 2 + 3 2 ⋅ 2 2 = 2 + 6 4 {\displaystyle {\frac {1}{2}}\cdot {\frac {\sqrt {2}}{2}}+{\frac {\sqrt {3}}{2}}\cdot {\frac {\sqrt {2}}{2}}={\frac {{\sqrt {2}}+{\sqrt {6}}}{4}}} {\frac {1}{2}}\cdot {\frac {{\sqrt {2}}}{2}}+{\frac {{\sqrt {3}}}{2}}\cdot {\frac {{\sqrt {2}}}{2}}={\frac {{\sqrt {2}}+{\sqrt {6}}}{4}}

Example 2

Evaluate the following. sin ⁡ π 8 {\displaystyle \sin {\frac {\pi }{8}}} \sin {\frac {\pi }{8}}

Write the expression in terms of common angles. Here, we recognize that π 8 {\displaystyle {\frac {\pi }{8}}} {\frac {\pi }{8}} is half of π 4 . {\displaystyle {\frac {\pi }{4}}.} {\frac {\pi }{4}}. sin ⁡ π 8 = sin ⁡ ( 1 2 ⋅ π 4 ) {\displaystyle \sin {\frac {\pi }{8}}=\sin \left({\frac {1}{2}}\cdot {\frac {\pi }{4}}\right)} \sin {\frac {\pi }{8}}=\sin \left({\frac {1}{2}}\cdot {\frac {\pi }{4}}\right)

Use the half-angle identity. sin ⁡ ( 1 2 ⋅ π 4 ) = ± 1 − cos ⁡ π 4 2 {\displaystyle \sin \left({\frac {1}{2}}\cdot {\frac {\pi }{4}}\right)=\pm {\sqrt {\frac {1-\cos {\frac {\pi }{4}}}{2}}}} \sin \left({\frac {1}{2}}\cdot {\frac {\pi }{4}}\right)=\pm {\sqrt {{\frac {1-\cos {\frac {\pi }{4}}}{2}}}}

Evaluate and simplify. The plus-minus on the square root allows for ambiguity in terms of which quadrant the angle is in. Since π 8 {\displaystyle {\frac {\pi }{8}}} {\frac {\pi }{8}} is in the first quadrant, the sine of that angle must be positive. 1 − cos ⁡ π 4 2 = 2 − 2 2 {\displaystyle {\sqrt {\frac {1-\cos {\frac {\pi }{4}}}{2}}}={\frac {\sqrt {2-{\sqrt {2}}}}{2}}} {\sqrt {{\frac {1-\cos {\frac {\pi }{4}}}{2}}}}={\frac {{\sqrt {2-{\sqrt {2}}}}}{2}}

What's your reaction?

Comments

https://wapozavr.com/assets/images/user-avatar-s.jpg

0 comment

Write the first comment for this!